
DOCUMENT RESUME

ED 377 709 FL 022 680

AUTHOR Moisl, Hermann
TITLE Recurrent Artificial Neural Networks and Finite State

Natural Language Processing.
PUB DATE [94]

NOTE 13p.

PUB TYPE Reports Evaluative/Feasibility (142) Viewpoints

(Opinion/Position Papers, Essays, etc.) (120)

EDRS PRICE MFO1 /PCO1 Plus Postage.

DESCRIPTORS *Computational Linguistics; Foreign Countries;
*Language Processing; Language Research; *Linguistic
Theory; Neurolinguistics; Simulation

IDENTIFIERS *Natural Language; *Ne-.'.ral Networks

ABSTRACT
It is argued that pessimistic assessments of the

adequacy of artificial neural networks (ANNs) for natural language
processing (NLP) on the grounds that they have a finite state
architecture are unjustified, and that their adequacy in this regard
is an empirical issue. First, arguments that counter standard
objections to finite state NLP on the grounds that these objections
confuse the explanatory aims of linguistic theory with the essential
technological aims of NLP are presented. A finite state NLP model
that maps strings onto meaning representations is then proposed and
preliminary string processing test and cluster analysis results of a
computer simulation are presented, briefly addressing some problems
and further developments. It is concluded that it remains to be seen
whether the model can be developed for general NLP, but that it
exemplifies the kind of radical departure from linguistics-based NLP
that is possible once the supposed theoretical obstacles to finite
state NLP are removed. In particular, it departs from
linguistics-based NLP in making no use of any syntactic or
compositional structure beyond the purely sequential and amounts to
table lookup mapping from strings to meaning representations.
Contains 33 references. (MSE)

Reproductions supplied by EDRS are the best that can be made
from the original document.

*

Recurrent Artificial Neural Networks and Finite State Natural Language
Processing

U.S. DEPARTMENT Of EDUCATION
Office al EcluelliOnal RllirCh and Impfovement

EDUCATIONAL RESOURCES
)

INFORMATION
ENTER (ER

ZihriK

C

k.curriht has been reproduced as

wowed horn the person of Organization
Ofigmating d

O Minor changes have teen made to improve

roprOduCh0A quility

Pants Of new or opinoOnS slated in this docu.
ment do not necessarity represent official
OERI position or oOlicy

(N)

Hermann MOISL
Department of English Language

University of Newcastle upon Tyne
Newcastle upon Tyne NE I 7RU

Great Britain

Email: Hermann.Moisl@newcastle.ac.uk

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Abstract
This paper argues that the supposed inadequacy of recurrent ANNs for NLP on the
grounds that they have finite-state architecture is mistaken in that it confuses the
explanatory aim of generative linguistic theory with the essentially technological one of
NLP, which is to construct physical striiig-processing devices. The first part of the
discussion counters standard objections to finite state NLP in the light of this
assumption, and the second proposes, implements, and tests a finite state NLP model
which maps strings to meaning representations.

Keywords: Natural language processing, artificial neural networks, finite-state NLP.

Introduction

One of the many application areas of artificial neural networks (ANN) has been natural
language processing (NLP), and various ANN approaches to language processing have
been proposed (Sharkey & Reilly 1992 for overview and recent work). This paper
concentrates on one which has been prominent in recelit research: induction of language
processing devices in synchronous recurrent distributed ANNs by exposure to symbol
string environments (Elman 1990, 1991; Giles et al 1990, 1991, 1992, 1993; Servan-
Schreiber et at 1989, 1991; Pollack 1991; Sharkey & Sharkey 1993; Watrous & Kuhn
1992; Castano et al 1993; overview in Sanfeliu & Alquezar 1992). Such nets have
yielded promising results in language processing and in NLP more particularly, but there
appears to be a problem in principle which renders them inadequate for general NLP. In
terms of their architecture and string processing dynamics these nets look very like strict
finite state automata, where 'strict' refers to FSAs in which there is no distinction
between processor and memory (on which see further Schwarz 1992). But one of the
earliest and most enduring results in generative linguistics is that finite state devices are
inadequate for generating natural languages, with the consequence that the nets in
question appear to be inadequate on theoretical grounds for NLP. The general argument
of this paper is that the theoretical problem is only apparent, and that the adequacy of
recurrent distributed nets for NLP is a purely empirical issue. The discussion is in two
main parts. The first considers and rejects standard arguments against finite state NLP,

BEST COPY AVAILABLE

Recurrent ANNs and Finite State NLP

and the second sketches a general approach to finite state NLP using one particular kind
of recurrent ANN: the simple recurrent network (SRN).

1. Finite state processing in NLP
NLP research has been and continues to be naturally associated with other

disciplines that concern themselves with the study of human language --theoretical
linguistics most obviously, but also the range of disciplines that come under the umbrella
of cognitive science, for which theoretical characterization of natural language is widely
seen as paradigmatic for understanding of cognition more generally. The argument of
this section is based on the assumption that the aims of NLP and of these associated
disciplines are .sindamentally different. Mainstream linguistics and cognitive science
regard natural language as an abstract object, and aim to explain it by developing
maximally expressive and economical theories about it. NLP, on the other hand, is
concerned with the design and construction of physical devices to process physical
strings for some purpose. On the basis of this assumption, the current section argues that
the objections in principle to finite state NLP stem from a failure to keep these aims
separate.

The pretty much standard approach in non-ANN NLP, exemplified in Gazdar &
Mellish 1989, is to implement a physical device on the basis of some preferred linguistic
theory. That is, the grammatical categories, syntactic structures, and any structure-
manipulating devices such as movement rules of the linguistic theory are incorporated
into a language-processing algorithm, and that algorithm can then either be directly
physically realized or simulated on a general-purpose computer. The result is a physical
NLP device whose behaviour is both completely specified by the linguistic theory and as
fully understood as the theory itself. Moreover, as a purely practical matter, when
simulation rather than direct realization is chosen --and it invariably is-- the construction
of the NLP device becomes no more difficult than design and coding of the algorithm; a
compiler takes care of the rest. These are considerable advantages, but the fact remains
that direct instantiation of linguistic theories is not a necessary approach to construction
of NLP devices.

Given a physical system with an observable behaviour, what internal mechanisms
produce that behaviour? This is the identification problem, and the answer, in Arbib's
words, is this: 'Even if we know completely the function, or behaviour, of a device, we
cannot deduce from this a unique structural description...The process of going from the
behaviour of a system to its structural description is then not to be thought of as actually
identifying the particular state variable form of the system under study, but rather that of
identifying a state variable description of a system that will yield the observed behaviour,
even though the mechanism for generating that behaviour may be different from that of
the observed system' (1987, pp.38-9). True, theoretical linguistics is concerned with NL
in the abstract, not with the language behaviour of individual systems/humans, but the
idei ification problem nevertheless applies in that a class of systems is at issue: linguistic
theory is a structural description of the class of natural language speakers. This applies
straightforwardly to the present discussion. Assume some function, say, a mapping from
sentences to meanings. An NLP device realizes the function by pairing physical sentence
representations with physical meaning representations. Such a device would be
describable in terms of a processor which uses linguistic-theoretic ontology even though

3

Recurrent ANNs and Finite State NLP

it did not physically instantiate that ontology but rather used some other mechanism. In
other words, linguistic theory has no necessary implications for the design of NLP
processors. In principle, then, the way is open for candidate NLP technologies, including
devices with finite-state architecture such as recurrent ANNs. There are, however, some
standard objections to finite state architectures for NLP, and these will now be dealt with
in turn.

a) Unbounded-length centre embedding strings
One of the aims of syntactic theory is to characterize the range of NL sentence

structures as economically as possible without any necessary regard to how those
characterizations might relate to production and understanding of utterances by speakers
in the real world. Some of these structures are characterized as recursive; because it
imposes no physical realization constraints, syntactic theory permits an arbitrary depth of
recursive embedding and consequently sentences of unbounded length, which in turn
renders the language in question an infinite string set. Now, as long ago as 1959
Chomsky demonstrated that finite state devices are incapable of generating or processing
the language anbn, that is, a set of strings in which some unbounded number of a given
symbol a is followed by exactly the same number of some other symbol b, where n is any
positive integer. Since this string pattern is attested in NLs in what are analyzed as
recursive centre embedding structures, and since generative grammars do not specify
limits on recursive structures, any NL processing device has to be able to deal with
unbounded centre embedded strings. But this is impossible if the device is finite state,
and so finite state devices are inadequate for NL processing.

If, however, one is concerned not with abstract characterization of natural language
but with constructing a physical NLP device, it is only necessary to consider the string
set which the device can be expected to encounter in practice rather than the set it might
encounter in principle. On that view, arguments against the finite stateness of NLs simply
do not apply. In the real world there is no such thing as an arbitrarily deeply nested
recursive structure, and no such thing as a string of unbounded length. These things have
finite limits, and, seen in terms of what infinity is conventionally taken to mean, even the
longest NL, strings are really very short. The difference between the theoretical linguist's
and the NLP researcher's views of NL comes down to this. A grammar with recursion
generates an infinite string set as long as there is no bound on the application of that
recursion. As soon as a bound is imposed the language which the grammar generates
becomes a finite subset of the one generated by the unbounded version, which can be
processed by a finite state device (Hoperoft and Ullman 1979). There is consequently no
reason why a finite state device should not process any member of the class of natural
languages.

None of this is new. Miller & Chomsky (965, 464-83) recognized that the human
language processor had to be finite state, and the inevitable finite stateness of physical
NLP devices has since been generally accepted though rarely mentioned and sometimes,
it seems, forgotten. Despite this, strict finite state architecture has never to my
knowledge been seriously entertained for NLP. The reasons for this have to do with the
second and third objections, to which we now turn.

b) Capturing generalizations

Recurrent ANNs and Finite State NLP

Strict finite state architecture differs from that of higher-order automata in
automata theory in that the the higher-order ones have a processor-memory distinction
(Schwarz 1992). If a bound is placed on the memory of such a higher-order device, it
becomes functionally finite state, that is, it can be simulated in terms of input-output
behaviour by a strict finite state machine. The only difference is that the two sorts of
device use different algorithms to compute any given function on account of their
different architectures.

Advocates of finite state NLP have preferred higher-order, bounded-memory
architectures to the strict finite state one explicitly on account of the former's explanatory
advantage in relation to generative linguistic theory (Chomsky 1956, 109; Miller &
Chomsky 1965, 466-75; Church 1980; Pulman 1986). If one's aim is explanation, then
clearly a higher-order automaton with bounded memory is to be preferred. But the
primary aim of NLP is construction of physical devices, not explanation, so the choice
between higher-order, bounded memory and strict finite state architecture is in principle
neutral.

c) Compositionality
Semantic theory in theoretical linguistics aims to associate linguistic expressions

with meanings, given some definition of 'meaning'. This involves at least:
assignation of meaning to the primitive expressions --the morphemes-- of a given
language,
specification of how the primitive expressions relate to composite expressions --
phrases and sentences-- in that language, and

specification of how linguistic meaning relates to the world.
There are various approaches to these tasks; the one used for exemplification here,
formal or Montague semantics (Cann 1993), has been and continues to be influential.
Formal semantics defines the meaning of a sentence as its truth conditions: a sentence
means what the world would have to be like for the sentence to be true. Truth conditions
are defined relative to a 'universe of discourse' which the semantic theory models. Such a
model has two main parts: (1) the entities of the universe of discourse are identified, and
the relationships between these entities and the primitive expressions of the language,
that is, the denotations of the primitive expressions, are defined, and (2) how the
denotations of composite expressions are constructed from those of primitive
expressions is specified. Part (2) is based on Frege's principle of compositionality, which
says that the meaning of a composite expression is a functions of the meanings of its
component primitives and their manner of combination, and is defined using a grammar
which both generates the sentences of the language in question, and associates a
constituent structure with each sentence. The connection between syntactic structure and
meaning is made by the rule-to-rule hypothesis, in which each syntactic rule is associated
with a corresponding semantic rule which specifies the meaning of a composite
expression in terms of its immediate syntactic constituents. In this way, syntax can be
said to drive semantics in the sense that, given the meanings of the morphemes of a
language, syntactic structure determines what sentences mean.

Compositionality has also been at the centre of a long-running debate in the
cognitive science community, where the rival claims of an established 'classical' approach
to the study of cognition and those of the 'connectionist' challenger are at stake (recent

4

Recurrent ANNs and Finite State NLP

discussion and extensive refererences in Dinsmore 1992 and Connection Science vol.4).
The classical position, forcefully put by Fodor and Pylyshyn in 1988, is that, in order
adequately to explain certain fundamental aspects of cognition one requires the notion of
the structured representation, that is, of a mental object consisting of primitive symbols
arranged in a constituent structure with compositional semantics, and the notion of
mental processes which interpret representations in a way that is sensitive to their
structure; because they are by nature finite state devices, ANNs cannot articulate or
process representations with a constituent structure adequate for capturing the requisite
generalizations about cognition. In response, connectionist cognitive scientists have
worked to vindicate ANNs as a suitable alternative paradigm for cognitive theorizing by
developing specifically connectionist accounts of compositionality, chief among them
Smolensky's tensor product representation (Smolensky 1990) and van Gelder's functional
compositionality (van Gelder 1990), which is based on temporal rather than spatial
structuring of constituents. Functional compositionality is exemplified in Pollack's
RAAM (Pollack 1990) architecture, and applied to NLP by Chalmers 1990 and Blank,
Meeden, & Marshall 1991.

Central to both theoretical linguistics and cognitive science, then, is the idea of
semantic interpretation of an expression on the basis of its syntactic structure. Now, it is
universally agreed that NL sentences have a complex and varied structures. Hew,
therefore, can a finite state architecture which imposes a single, strictly sequential syntax
on sentences be adequate for NL semantics? The classicists in the cognitive science
debate think that it cannot, and the connectionsts agree in that they have found it
necessary to develop compositional representational methods in ANNs. Nevertheless, I
claim that compositionality has no necessary implications for NLP.

The basis for this claim is, again, that explanation is one thing, and construction
of physical devices another. Compositional semantics in NL sentences depends crucially
on the attribution of more or less complex syntactic structure to sentences. But sentences
are abstract objects, and so are the structures attributed to them: both are artefacts of
linguistic theory. Physical strings, whether spoken or written, have no physical structure
apart from strict temporal or spatial sequence. One approach to instantiating a sentence-
to-meaning function is to map strings onto abstract sentences with abstract structures
and to process these sentences in accordance with those structures, which yields a
processor that is perspicuously related to linguistic theory as well as structured meaning
representations, but the identification problem says that this is not necessary. Since, for
NLP, it suffices that the sentence-to-meaning function be realized by a device which pairs
strings with physical meaning representations, another legitimate approach is to attempt
to process strings in accordance with the structure we know for certain they have --strict
sequence-- using a process with strict finite state architecture.

2. Recurrent ANNs and NLP
Assuming the validity of the arguments in Part 1, the way is clear for development of

an approach to NLP based on strict finite state architecture. But, as the Celtic chieftain
Calgacus is reputed to have said of the Roman invasion of Britain: 'They made a desert
and called it peace' (Tacitus, Agricola). Notions of complex phrase structure and
associated compositional semantics provide intuitively accessible and theoretically well
developed ways of thinking about language, and offer a basis for the design of NLP

Recurrent ANNs and Finite State NLP

devices via the relationship between linguistics and computation which formal language
and automata theory defines. If one dispenses with these notions in NLP design, what
will replace them? This section sketches a proposal for an alternative.

It is best to be clear at the outset that generative linguistic theory is not being
challenged: for present purposes it is accepted as a characterization of what has
traditionally been called human linguistic competence. The issue is the relationship
between linguistic theory and the physical processing mechanisms required for NLP, and
the argument is, in essence, that physical instantiation of computational architectures
with the processor-memory distinction (Schwarz 1992) is unnecessary.

Generative linguistic theory defines a function from linguistic expressions --words,
phrases, sentences-- to meanings, given some definition of 'meaning'. An NLP device
implements this function if, given a physical representation of an expression, it returns a
physical representation of the associated meaning. Since NILs are finite sets for NLP
purposes, it becomes possible to define the function as a list of (expression-meaning)
pairs, and for an NLP device to do nothing more than table lookup on a physical
representation of the list. The proposal is to train a recurrent ANN with strict finite state
architecture to implement such a table lookup device. The discussion is in three parts: (a)
designs a computer simulation of an ANN to associate strings with meaning
representations, (b) presents test results and analysis of that ANN, and (c) briefly
addresses some issues which arise from (a) and (b).

a. Network design and implementation
The aim is to implement a mapping from linguistic expressions to meanings, given a

finite set of expressions. This requires pairing of each expression of length 1 with a
meaning, each expression of length 2 with a meaning, and so on up to some maximum
length. For example:

Expressions

Meanings
1 2 3 4 5 6

the
the man
the man in
the man in the
the man in the tent
the man in the tent slept

Figure I

Here, meanings are labelled 1, 2, 3...; the expression the means 1, the man means 2, the
man in means 3, and so on. In view of the number of words in English and of the
possible combinations of words up to some reasonable maximum sentence length, this
approach may appear to require a very large number of meanings, but in fact there are
exactly as many as that which generative linguistic theory would posit for the same
expression set. Linguistic theory would generate the meanings more elegantly than an
explicit listing by building them out of the meaning primitives assigned to morphemes,
but elegance is not an issue here.

Like much of the grammatical induction work mentioned in the Introduction, the net
used to implement this mapping is a simple recurrent network (SRN), a discrete-time

Recurrent ANNs and Finite State NLP

dynamical system whose architecture and processing dynamics make it straightforwardly
interpretable as a finite state automaton (for example Arbib 1987, 24-6):

Strings

Feedback

-4 Meaning
--) representations

0 0

Figure 2

The set of inputs is the input alphabet
The set of outputs is the output alphabet
The set of hidden layer configurations is the state set
The connections between the input and hidden layers are the next state function in
that, for every combination of current input and current state, they generate a
characteristic associated next state in the hidden layer.
The connections between hidden and output layers are the output function in that, for
every state of the hidden layer, they generate a characteristic output in the output
layer.

The SRN is in principle a physical device with physical input and output signals, but as
with virtually all ANN research practice it is simulated on a conventional computer. The
linguistic expressions and meanings, which are in principle to be represented physically,
in fact need to be given a representation appropriate to the simulation. This means
numerical vectors whose components represent features of the physical input and output
signals. The frequently-used 'one-hot' encoding is adopted here, where each distinct input
and output from the net is assigned a unique binary-valued vector in which a single
component is 1 and all the rest are 0. This is unrealistic for actual NLP work, where one
would want to represent features of acoustic or visual input in some detail, but it suffices
for present purposes. The result is a list of (binary-valued vector sequence, binary valued
vector) pairs which represent the (linguistic expression, meaning) pairs of the mapping.

The SRN is trained by repeated random selection of a pair from the list, and
presentation of that pair to the net so that it can learn to associate the components using
back propagation; this continues until the learning error curve stops decreasing
significantly. For example, training the net on the list in Figure 1 would proceed as
follows. Choose a pair, say (the,1): the vector representation of the is presented to the
designated units in the first layer of the net, the vector representation of 1 becomes the
target output, and back propagation is applied. Choose another, say (the man, 2): the
vector representation of the becomes the input and the vector representation of 1 the
target output, then the vector representation of man becomes the input and the vector
representation of 2 the target output, applying back propagation in each case. Similarly,
for (the man in, 3), the is associated with 1, man is associated with 2, and in with 3. In

7

Recurrent ANNs and Finite State NLP

this way, the net learns a mapping from strings to meanings: in all the Figure 1 strings the
means 1, in strings 2-6 the man means 2, in strings 3-6 the man in means 3, and so on up
to the man in the tent slept, which means 6.

b. Results and analysis
i. Results:

The simulation was trained and tested on sets of up to 24 strings of maximum length
12, all of them of the declarative the cat with the long tail sat on the mat variety, and
learned the string-meaning function perfectly. Special attention was paid to the net's
ability to handle long-distance dependencies, since this is always an issue in NLP
research and has often --though erroneously-- been regarded as a problem for finite state
processors. The net had no difficulty with maintaining dependencies across the distances
so far required of it: the man in the boat by the shore sees I the men in the boat by the
shore see, or the centre-embedding the car the man the woman loves drove stopped

ii. Analysis:
For an SRN with n units in its hidden layer, the values which those units assume at

any processing step constitute an n-component vector. Each such vector defines a point
in n-space. For a test string of length a there are a hidden-layer configurations, and for b
test strings there are c = El ..b Ei..a configurations. In the grammatical inference
research mentioned in the Introduction, it is usual to carry out a cluster analysis of these
c vectors in order to gain some insight into network operation. These analyses have
shown that the points are not in general haphazardly distributed in n-space, but cluster in
regions of that space such that all the hidden-layer vectors which generate a given output
are adjacent. Such clusters are usually interpreted as states of a finite state machine
which the net has inferred from string input, but this is an unnecessary abstraction. The
component vectors of a cluster typically differ from one another to greater or lesser
degrees, and an alternative interpretation, adopted here, is to assign a separate state to
each distinct hidden layer configuration. This results in a much larger finite state machine
for a given function, but corresponds more directly to physical reality.

The hidden layer configurations which the trained net assumed in the course of
string processing in (i) were subjected to cluster analysis, and the results were
unsurprising: the hidden-layer vectors clustered in accordance with the target output, as
above. Assuming, however, a separate state for every distinct vector, the analysis shows
that there is a unique state for every (expression-meaning) pair. Thus, for the three
strings

1. the man ate his lunch
2. the man in the restaurant ate his lunch
3. the man in the restaurant ate a sparing lunch

the state sequences for initial the and for man are identical in all three cases; thereafter
(1) and (2,3) bifurcate, and (2,3) continue with identical state sequences for in the
restaurant ate, at which point they too bifurcate; ate his lunch in (1) and (2), though
lexically identical, have different state sequences; there are three distinct states for lunch.
By following the trajectory which each string generates in the state space, one can see
that the net learns a distinct state sequence for every distinct string.

8

Recurrent ANNs and Finite State NLP

c. Discussion
Whether or not the approach proposed in (a) will be practicable, and what sorts of

development are required, are empirical matters. At least two issues arise at this stage,
however, both of them having to do with the assumed prior existence of an (expression,
meaning) list and of a corresponding physical representation of it:
i. Though theoretically possible on the grounds of finiteness, construction of an

(expression, meaning) list for some NL would be a huge and almost certainly infeasible
task.

ii. Linguistic expressions and meanings are abstractions, and compilation of a list implies
some physical representation scheme. Representation of linguistic expressions is well
understood, but it is not at all clear what a physical representation of a meaning might
look like; in the foregoing discussion 'meaning representations' were simply variables
instantiated by arbitrary vectors for the sake of argument.

Despite its theoretical validity, the architecture proposed in (a) emerges as impractical in
the light of (i) and (ii). The following development of that architecture is intended to
address this.

An increasingly favoured idea in connectionist research is that ANN-based systems
be 'hooked up' to the world with a range of sensors which transduce physical signals into
a format amenable to ANN processing, thus providing input representations which relate
to environmental regularities in a systematic way and thereby, it is hoped, allowing nets
to behave in ways interpretable as semantically coherent (e.g. Plunkett et al 1992; Pfeifer
& Verschure 1992; Peschl 1992). My development of the NLP approach being proposed
here is based on this idea. Specifically, I use several SRNs to implement a system of
interconnected finite state automata:

acoustic
signal

visual
signal

:Nu
1

1

r_
3

Figure 3
The acoustic and visual components (1, 3) are the input sensors. Each consists of a
Kohonen net (represented by a grid) which functions as a transducer from physical
signals to 2-D topographic maps, and an SRN which learns sequences of topographic
maps corresponding to time-sliced acoustic and visual inputs respectively. Between them
is the link SRN (2), which takes the acoustic SRN hidden layer configuration as input
and the corresponding visual SRN hidden layer configuration as target output. The link
SRN hidden layer configuration sequence represents the association of acoustic and
visual input sequences.

This addresses (i) and (ii) above as follows:

Recurrent ANNs and Finite State NLP

i. Given an appropriate physical environment, the net learns to implement the expression-
to-meaning function on-line and incrementally. There is no need to predefine an
(expression, meaning) list.

ii. The net generates its own representations: expression representations are abstracted
from acoustic input in the hidden layer of the acoustic SRN, and meaning
representations develop in the link SRN hidden layer on the course of training; the
intention is that, at any stage of acoustic input, the link net hidden layer should
represent the meaning of the string up to that point, where 'meaning' is understood in an
impoverished sense appropriate to the restricted range of inputs.

Conclusion
This paper has argued that pessimistic assessments of the adequacy of recurrent

ANNs for NLP on the grounds that they have a finite state architecture are unjustified,
and that their adequacy in this regard is an empirical issue. Part 1 presented arguments
countering standard objections to finite state NLP on the grounds that these objections
confuse the explanatory aims of linguistic theory with the essentially technological aims
of NLP. Part 2 then went on to propose a finite state NLP model which maps strings
onto meaning representations, presented preliminary string processing test and cluster
analysis results of a computer simulation, and briefly addressed some problems and
further developments. Whether or not the model can be developed for general NLP
remains to be seen, but even as it stands it exemplifies the kind of radical departure from
linguistics-based NLP that is possible once the supposed theoretical obstacles to finite
state NLP are removed. In particular, it departs from linguistics-based NLP in making no
use of any syntactic or compositional structure beyond the purely sequential, and
amounts to table lookup mapping from strings to meaning representations.

References

Arbib, M. (1987) Brains, machines, and mathematics, 2nd ed. Springer, New York.

Blank, D., Meeden, L. & Marshall, J. (1992) 'Exploring the symbolic/subsymbolic
continuum. a case study of RAAM', in: The symbolic and connectionist paradigms:
closing the gap, ed. J. Dinsmore. Lawrence Erlbaum.

Cann, R. (1993) Formal semantics: an introduction. Cambridge University Press,
Cambridge UK.

Castano, M., Vidal, E. & Casacumberta, F. (1993) 'Inference of stochastic regular
languages through simple recurrent networks', in Grammatical Inference: theory,
applications, and alternatives, ed. S. Lucas, 1EE, London.

Chalmers, D. (1990) 'Syntactic transformations on distributed representations',
Connection Science 2, 53-62.

Recurrent ANA's and Finite State NLP

Chomsky, N. (1956) 'Three models for the description of language', IRE Transactions on
Information Theory IT-2, 109.

Church, K. (1980) 'On memory limitations in natural language processing', Tech. Report
MIT/LCS/TR-45.

Dinsmore, J. (1992) The symbolic and connectionist paradigms: closing the gap.
Lawrence Erlbaum.

Elman, J. (1990) 'Finding structure in time', Cognitive Science 14, 179-211.

Elman, J. (1991) 'Distributed representation, simple recurrent networks, and grammatical
structure', Machine Learning 7, 195-225.

Fodor, J. & Pylyshyn, Z. (1988) 'Connectionism and cognitive science: a critical analysis',
Cognition 28, 3-71.

Gazdar, G. & Mellish, C. (1989) Natural language processing in LISP. Addison-
Wesley.

Giles, C., Sun, G., Chen, Lee, Y, & Chen, D. (1990) 'Higher order recurrent networks
and grammatical inference', in: Advances in neural in fromation systems 2, ed. D.
Touretzky. Morgan Kaufmann.

Giles, C., Chen, D., Miller, C., Chen, H., Sun, G., & Lee, Y. (1991) Grammatical
inference using second-order recurrent neural networks, Proceedings of the
International Joint Conference on Neural Networks, IEEE 91 CH3049-4.

Giles, C., Miller, C., Chen, D., Sun, G., Chen, H. & Lee, Y. (1992) 'Extracting and
learning an unknown grammar with recurrent neural networks', in: Advances in neural
information processing systems, ed. J. Moody, S. Hanson, R. Lippmann. Morgan
Kaufmann.

Giles, C. & Om lin, C. (1993) 'Extraction, insertion, and refinement of symbolic rules in
dynamically driven recurrent neural networks', Connection Science 5, 307-338.

Hoperoft, j. & Ullman, J. (1979) Introduction to automata theory, languages, and
computation. Addison-Wesley.

Miller, G. & Chomsky, N. (1965) 'Finitary models of language users'. in: Readings in
mathematical psychoiogy II, ed. R. Bush, E. Galanter, D. Luce. John Wiley.

Peschl, M. (1992) 'Construction, Representation, and the Embodiment of Knowledge,
Meaning, and Symbols in Neural Structures, Connection Science 4, 327-338.

Recurrent ANNs and Finite State NLP

Pfeifer, R. & Verschure, P. (1992) 'Beyond Rationalism: Symbols, Patterns, and
Behaviour, Connection Science 4, 313-325.

Plunkett, K., Sinha, C., Moeller, M. & Strandsby, 0. (1992) 'Symbol Grounding or the
Emergence of Symbols?', Connection Science 4, 293-312.

Pollack, J. (1990) 'Recursive distributed representations', Artificial Intelligence 46, 77-
105.

Pollack, J. (1991) 'The induction of dynamical recognizers', Machine Learning 7, 123-
148.

Pulman, S. (1986) 'Grammars, parsers, and memory limitations', Language and
Cognitive Processes 1, 197-225.

Sanfeliu, A. & Alquezar, R. (1992) 'Understanding neural networks for grammatical
inference and recognition', in: Advances in structural and syntactic pattern recognition,
ed. H. Bunke. World Scientific.

Schwarz, G. (1992) 'Connectionism, processing, memory', Connection Science 4, 207-
226.

Servan-Schreiber, D., Cleeremans, A. & McClelland, J. (1989) 'Learning sequential
structure in simple recurrent networks', in: Advances in neural information processing
systems 1, ed. D. Touretzky. Morgan Kaufmann.

Servan-Schreiber, D., Cleeremans, A. & McClelland, J. (1991) 'Graded state machines:
the representation of temporal contingencies in simple recurrent networks', Machine
Learning 7, 161-193

Sharkey, N. & Reilly, R. (1992) Connectionist approaches to natural language
processing. Lawerence Erlbaum.

Sharkey, A. & Sharkey, N. (1993) 'Connectionism and natural language', in:
Grammatical it Terence: theory, applications, and alternatives, ed. S. Lucas. IEE,
London.

Smolensky, P. (1990) 'Tensor product variable binding and the representation of
symbolic structures in connectionist systems', Artificial Intelligence 46, 159-216.

van Gelder, T. (1990) 'Compositionality: a connectionist variation on a classical theme',
Cognitive Science 14, 355-384.

Watrous, R. & Kuhn, G. (1992) 'Induction of finite state languages using second-order
recurrent networks', Neural Computation 4, 406-414.

